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weed management  
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Abstract 

Weed management in modern agriculture is crucial to avoid yield losses 
and ensure food security. Climate change, intensive agricultural practices, 
and natural disasters change weed dynamics, requiring changes in weed 
management strategies. In addition to labor shortages, manual and 
chemical control options are no longer viable because of weed resistance 
to herbicides and the effects of eco-degradation and health hazards. As a 
result, weed management strategies that boost agricultural productivity 
are urgently needed. Precision agriculture has become one alternative for 
managing weeds, using tools and technologies to boost farm productivity. 
Recent innovations in precision application technology have made it 
possible to make smaller treatment units that can be applied to meet site-
specific demands. These systems combine ground-based and aerial weed 
sensing systems (that are site-specific, need-specific, and cost-effective) 
with integrated weed management. Despite the viability of all of these 
strategies in today's agriculture, site-specific selections and the 
appropriate combination of these eco-friendly strategies can efficiently 
reduce herbicide use, and ensure environmental protection while 
enhancing weed control efficiency and crop yield. 
 
Keywords aerial sensors, crop yield loss, ground-based sensors, 
precision agriculture, weed management 

Introduction 

During the last few decades, population growth has exerted a tremendous 
amount of pressure on crop production, which has forced farmers to 
intensify agriculture to meet rising food demands.   Due to their 
competition and allopathic effects, weeds significantly reduce crop yields. 
Further, weeds serve as a habitat for insect pests, fungi, and bacteria that 
can harm nearby crops, and help support other biological components of 
the environment [1-3]. In modern agriculture, due to intensive 
management practices, ecological changes, and climate change, weed 
infestations and weed behaviors change very frequently [4-5]. Weed 
control can be done either mechanically with the application of herbicides 
or with specific cultivation practices [6]. However, intensive 
mechanization encourages soil erosion [7], leading to degradation in soil 
fertility. Herbicide use can pollute the air, food, soil, and water causing 
human and animal health hazards [8], creating weeds, herbicide-
resistant, and unbalancing ecosystems. Find solutions to all these 
problems and increase agricultural productivity, robotics number and 
site-specific solutions used in precision agriculture have increased 
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significantly in recent years. An expanding array of new technologies are being developed and 
implemented in agricultural practices, which are also crucial to progress toward sustainable weed 
management on an economic and environmental level. [6]. When weeds are controlled accurately, 
inputs are reduced without affecting the effectiveness of weed control [9]. Sensory, weeding and 
spraying technologies have brought about significant cost savings and technical advances, and some 
of these have been exploited commercially. [6]. Weed control methods used in precision agriculture 
are accurate and precise and intended to target specific weeds. The early twentieth century saw the 
advent of a new weed management approach that was site-specific. It started with grid sampling and 
mapping of weeds [10-11]. Through the mapping of weeds and spraying of herbicides in a site-
specific manner in more than fifty field experiments with, maize, sugar beets, cereals, and peas, 
researchers saved 22%–89% in herbicide usage without compromising crop yields or increasing 
weed control costs in the succeeding years [6, 12-13]. It may be possible to reduce herbicide usage 
even more if these herbicides are site as well as species-specific [14]. Currently, numerous 
applications of this concept are being explored such as weed control using cameras, remote sensing-
based patch spraying, and weeding using robotic technology. 

Researchers are currently developing several other prototypes, including electrical weed 
control using sensor-based technology [15], unmanned aerial vehicle (UAV)-based mapping of weeds, 
and site-specific spraying of herbicides [16-17] and target-based weed control with controlled 
application of herbicides [18-19]. 

Weed detection/recognition by precision agriculture technology 

Hyper-spectral/Multi-spectral imagery (Remote sensing) 
Slaughter et al., [20] reportedly tried to differentiate between the tomato plant from nightshade weed 
(Solanumnigrum L.) using a broadband color classifier and a narrowband (10 nm bandwidth) visible 
region hyper-spectral classifier. In controlled spectrophotometer measurements of around 400 leaf 
samples, digitalized data from the 8-bit/band showed that the broadband color classification rate was 
76% while the narrowband classification rate was 87%. Although the broadband color classifier 
accuracy did not change when digitalizing the data at 12-bits/band, the narrowband classifier 
performance increased to 95%. Borregaard et al., [21] reported an accuracy of 89-94% in crop versus 
weed classification at 694 nm and 970 nm wavelength using narrowband reflectance in comparison 
to other wavelengths while exploring the potential of ground-based hyperspectral machine vision 
systems. A similar study done by Feyaerts and van Gool [22] reported that when seventy 
hyperspectral images of sugar beet and 5 different weeds each were collected, the weed identification 
rate of 80% and 91% were recorded for sugar beet and weeds, respectively. Koger et al., [23] 
reported that multispectral imagery for weed identification was highly successful in weed-infested 
soybean as the differentiation rate was 88 to 92% for experiment 1, and for experiment 2, it was 85-
96% across all the images. 
 
Unmanned Arial Vehicle (Remote sensing) 
Lee [24] reported that with SUMINV combined with ELG and CMP, the rate of true leaf recognition 
went from 38.0% to 62.0%, but the rate of cotyledon recognition decreased even more with a decline 
from 80% to 6.7%. These three factors also increased the weed recognition rate to 76.5%, while 
decreasing the recognition rate of miscellaneous tomato leaves to 0%. These results indicate that a 
high level of variability in shape patterns is observed when the shape is described by a top view of a 
single two-dimensional plant in an uncontrolled environment. Pflanz et al., [25] reported that a UAV 
platform with an altitude between 2.5 and 4.0 m yielded the best accuracy and precision for weed 
mapping. With 87% MATCH had the highest mapping precision and at lower altitudes, VIOAR and 
PAPRH obtained at par high precision values. As the altitude of the UAV increased the mapping 
precision drastically decreased and was even below 50%. 
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Figure 1. : Demonstration of integration of weed mapping and herbicide application by UAV’s . (a). Random image of 
a field where weeds were mapped (blue area) (b) Specific flight paths (yellow arrows) generated to suit the areas in 

which the application of herbicide was needed (c). UAV images collected after the application of herbicide  
(d) and (e) Mapping of different areas of field categorized as true positive, false positive, false negative and true 

negative. These classifications help in determining the precision, accuracy and efficiency of the UAV’s. 
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Robotic technology 
A study performed by Tian et al., [26] and Lee et al., [27] explored two computer vision methods to 
improve species recognition based on leaf shape when used from a moving vehicle to identify crops 
from weeds in vivo. The recognition rate of the tomato cotyledons image sets was 40-60% in 1994 
and 62-80% in 1997. While the weed recognition rate was more than 95% in 1994 and 69% in 1997. 
The difference in performance was due to the effort to obtain better weed and crop identification by 
controlled lightning in 1997. A self-governed robot made by Astrand and Baerveldt in 2002 [28] that 
discriminates sugar beets from weeds has proven to be one such advanced machine vision system. An 
analysis of color images of 214 sugar beet plants and 373 weed plants collected from many different 
sugar beet fields determined that the 5-NN classifier’ green mean feature [g=G/ (R + G + B)] was 
efficient in distinguishing crops and weeds with 91% accuracy in cross-validation in comparison to 
color excluded, color features, Compactness, Elongation features Raja et al. (2020) [29] reported that 
the classification accuracy was 99.75% for lettuce plants and 83.74% for the weeds. Weeds classified 
as crop plants accounted for 14.37% of the total weeds, but these plants were not sprayable due to 
their proximity to the crop plants. As a result approx. 99% of weeds were distinguished for herbicide 
spraying while 98% of the weeds as sprayable. In critical in-field conditions such as high-density 
weeds, the algorithm provides significantly superior results than many existing methods when it 
comes to crop and weed detection and their discrimination used. 

Influence of site-specific application/patch spraying on agroecosystem 

Judicious use of herbicide 
Gerhards and Oebel [13] after a six-year study on the use of herbicide with patch sprayer over 
different crops and fields reported that herbicide use in winter cereals was reduced by 60% against 
broad-leaved weeds and by 90% against grass weeds using this approach. In the case of sugar beet 
and maize crops, herbicide saving for grass weed was about 36% and 78% respectively. For broad-
leaved weeds, the average savings for herbicide was about 11% in maize and 41% in sugar beet. In 
barley crops, herbicide saving ranged from 20-80% against broad-leaved weeds and 18-90% against 
grass weeds.  

Christensen et al., [30] used a computerized decision model. This model was composed of a 
competition model, a herbicide dose-response model, and an algorithm to determine the 
economically optimal dose, among others. Five-year experiments showed that optimizing the 
herbicide dosage each year based on weed species composition and density decreased the use of 
herbicide by 45% to 67% without compromising the yields or affecting the weed population. Hamouz 
et al. (2013) [31] reported that using site-specific herbicide applications resulted in saving herbicide 
between 15.6% and 100%, depending upon the threshold and herbicide used. By using fluroxypyr, 
the highest savings (85.94-100%) were achieved since only a few cells were invaded by G. aparine.  

The lower savings for metsulfuron-methyl + tribenuron-methyl herbicide (15%-60%) were 
attributed to the greater abundance and homogeneity of V. arvensis and T. inodorum. As recorded, 
higher herbicide savings were obtained with higher application thresholds. Despite the crop field 
being vaguely distributed with weeds in the form of patches, the results suggest that with site-specific 
weed control, herbicide savings can be achieved, regardless of how high the mean weed infestation 
might be. 
 
Increased crop yield 
Hamouz et al., [31] reported that all the site-specific treatments recorded higher yields in comparison 
to the blanket spraying even though none of the treatments were statistically significant. Similar 
results were reported by Ritter et al., [32] where he explained that the insignificance in statistical 
analysis resulted because the data analyzed had a high total variance, indicating that there may be 
other factors affecting the grain yield. Giles et al., [33] reported that all herbicidal treatments that 
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had glyphosate resulted in 20-30 fold higher yields than other treatments/controls. It was 
also observed that the highest yields (372.1ab) were from smaller doses of active ingredients 
indicating that there were more advantages to avoiding phytotoxicity than enhancing herbicide 
composition and application. 
 
Enhanced weed control efficacy 
Machleb et al., [34] reported that weed density with a Motorized finger weeder with 140 rpm and a 
Motorized finger weeder with 60 rpm reduced significantly to 15 and 19 plants per m sq. CFW had a 
weed population of 37 plants/m sq. Other than that there were no differences in weed density within 
the mechanical treatments except for the control, in the 2017 experiment. However, with the 
combination of mechanical treatment with a herbicide i.e. Herbicide along with motorized finger 
weeder (140 rpm) and Herbicide along with Motorized finger weeder (60 rpm) weed population 
significantly reduced to 1.7 and 1.3 plants per m sq. respectively. In the case of Herbicide along with 
Conventional finger weeder, a weed population of 5.3 plants per m sq. was recorded. Machleb et al., 
reported the highest weed control efficacy with herbicides treatments alone in 2017 and 2018 while 
the lowest weed control efficacy in 2017 was for the Conventional finger weeder (79%) and 
Herbicidal treatment along with Conventional finger weeder and also for conventional finger weeder 
alone in 2018 (77-78%). 
 
 
 

 
 

Figure 2. Economical and agro-ecological implications of using drones for site specific nutrient management 
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Other precision weed management tools 

Sensor based technologies 
Machleb et al., [34] reported higher sugar beet yield for four treatments Herbicide along with 
Conventional finger weeder, Herbicide along with motorized finger weeder (60 rpm), H2017, 
Herbicide along with motorized finger weeder (140 rpm) between 75-79 t/ha while the untreated 
control gave 6.9 t/ha yield(2017) and Motorized finger weeder with 140 rpm and Motorized finger 
weeder with 60 rpm yielded 48.5 t/ha and 52.4 t/ha, respectively while Conventional finger weeder 
yielded 36.2 t/ha. Low yield in Motorized finger weeder and conventional finger weeder was due to 
the high weed population problem. Untreated control recorded a yield loss of 91% compared to the 
most successful treatment of all. 
 
UAV-IS 
Hunter et al., [35] reported that the broadcast system applied herbicide to 92% of the areas where 
weed was absent while UAV-IS applied herbicide in only 30% of such areas, showing its much higher 
efficiency compared to the normal broadcast system. Only 1/3rd of the total plot area was treated 
with UAV-IS because of the larger weed cover. 
 
Robotic technology 
Lamm et al., [36] reported that the robots sprayed 88.8% of all weeds while identifying and leaving 
78.7% of cotton plants untouched. The total error from the sum proportional to the number of weeds 
and cotton plants corresponded to 13.1%. The primary source of error was the misclassification of 
plants and weeds by the system. Secondly, the spray placement was incorrect after the target was 
identified by the vision system. Astrand and Baerveldt [37-39] reported that a robotic weed control 
system was tested in the sugar beet field. It was reported that 99% of sugar beet plants had not been 
taken out while 41-53% of weeds had been taken out. 31% of the weeds were growing very close to 
the plants and therefore were not removed while 18% of the weeds which were growing in places 
where sugar beet was supposed to germinate were also not taken out. Blasco et al., [40] reportedly 
made an electrical weed control system (robotic). An electrical discharge of 15 kV killed the weeds 
with the robotic end-effector. In addition to the machine vision system used for weed detection in 
field images, the end-effector was provided with trajectory information during the electrical probe's 
positioning in another method. The system detected weeds based on their size (blobs that were much 
bigger than crop plants), ignoring the weeds that touched lettuce plants. A field test revealed that the 
computerized vision system identified 84% of weeds and 99% of lettuce plants, at a computation 
speed of 482ms per image. 

Conclusion 

In conventional farms, Precision agriculture technologies for weed management will be adopted 
primarily because of the reduction of herbicide use and the benefits to the environment. It will also be 
beneficial economically by reducing the costs of herbicides as well as yield losses due to herbicide-
resistant weed populations. These robust technologies have accurate weed detection and 
identification and mapping methods but still putting these technologies to practical use requires 
them to become more resilient under practical conditions. During the first years of operation, farmers 
must be assisted in learning about new technologies through on-farm research.  

For an entire field to be monitored on an individual plant level there will need to be 
communications, mobile devices, and decision support software, which are factors of swarm 
technology. It may eventually become more important to control individual crop plants or swarms 
through fields using coordinated robotics than to use genetically engineered seeds or new fertilizer 
formulations, so further research is needed to optimize these tools and technologies for 
improvements in efficiency and practicability. 
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